On Differentiability Properties of Player Convex Generalized Nash Equilibrium Problems∗
نویسندگان
چکیده
This article studies differentiability properties for a reformulation of a player convex generalized Nash equilibrium problem as a constrained and possibly nonsmooth minimization problem. By using several results from parametric optimization we show that, apart from exceptional cases, all locally minimal points of the reformulation are differentiability points of the objective function. This justifies a numerical approach which basically ignores the possible nondifferentiabilities.
منابع مشابه
Nonsmooth optimization reformulations of player convex generalized Nash equilibrium problems
Using a regularized Nikaido-Isoda function, we present a (nonsmooth) constrained optimization reformulation of a class of generalized Nash equilibrium problems (GNEPs). Further we give an unconstrained reformulation of a large subclass of all GNEPs which, in particular, includes the jointly convex GNEPs. Both approaches characterize all solutions of a GNEP as minima of optimization problems. Th...
متن کاملNonsmooth optimization reformulations characterizing all solutions of jointly convex generalized Nash equilibrium problems
Generalized Nash equilibrium problems (GNEPs) allow, in contrast to standard Nash equilibrium problems, a dependence of the strategy space of one player from the decisions of the other players. In this paper, we consider jointly convex GNEPs which form an important subclass of the general GNEPs. Based on a regularized Nikaido-Isoda function, we present two (nonsmooth) reformulations of this cla...
متن کاملPenalty Methods for the Solution of Generalized Nash Equilibrium Problems (with Complete Test Problems)
The generalized Nash equilibrium problem (GNEP) is an extension of the classical Nash equilibrium problem where both the objective functions and the constraints of each player may depend on the rivals’ strategies. This class of problems has a multitude of important engineering applications and yet solution algorithms are extremely scarce. In this paper, we analyze in detail a globally convergen...
متن کاملAsynchronous Schemes for Stochastic and Misspecified Potential Games and Nonconvex Optimization
The distributed computation of equilibria and optima has seen growing interest in a broad collection of networked problems. We consider the computation of equilibria of convex stochastic Nash games characterized by a possibly nonconvex potential function. In fact, any stationary point of the potential function is a Nash equilibrium of the associated game. Consequently, there is an equivalence b...
متن کاملHannu Vartiainen ― Klaus Kultti Multilateral Non-cooperative Bargaining in a General Utility Space Aboa Centre for Economics Hannu Vartiainen ― Klaus Kultti Multilateral Non-cooperative Bargaining in a General Utility Space
We consider an n-player bargaining problem where the utility possibility set is compact, convex, and stricly comprehensive. We show that a stationary subgame perfect Nash equilibrium exists, and that, if the Pareto surface is differentiable, all such equilibria converge to the Nash bargaining solution as the length of a time period between offers goes to zero. Without the differentiability assu...
متن کامل